polynomials - definition. What is polynomials
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

MATHEMATICAL EXPRESSION CONSISTING OF VARIABLES AND COEFFICIENTS
Integer polynomial; Polynomials; Simple root; Real polynomial; Quadranomial; Polynomial curve; Zero polynomial; Order and degree of polynomial; Polynomial multiplication; Constant polynomial; Complex polynomial; Polynomial arithmetic; Multivariate polynomial; Standard form of a polynomial; Standard Form of a Polynomial; Polynomial function; Polynomial Functions; Polynomial Function; Quadnomial; Linear polynomial; Simple root (polynomial); Univariate polynomial; Polynomial notation; Solving polynomial equations; Algorithms for solving polynomial equations; Bivariate polynomial; Complex Polynomial
  • thumb

Bateman polynomials         
Bateman polynomial; Bateman–Pasternack polynomials; Pasternack polynomials; Pasternak polynomials; Pasternack polynomial; Pasternak polynomial; Bateman-Pasternack polynomials; Bateman-Pasternack polynomial
In mathematics, the Bateman polynomials are a family Fn of orthogonal polynomials introduced by . The Bateman–Pasternack polynomials are a generalization introduced by .
Gegenbauer polynomials         
  • Plot of the Gegenbauer polynomial C n^(m)(x) with n=10 and m=1 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
  • Gegenbauer polynomials with ''α''=1
  • Gegenbauer polynomials with ''α''=2
  • Gegenbauer polynomials with ''α''=3
  • An animation showing the polynomials on the ''xα''-plane for the first 4 values of ''n''.
ORTHOGAL POLYNOMIAL SEQUENCE ON THE INTERVAL [−1,1] WITH RESPECT TO THE WEIGHT FUNCTION (1−𝑥²)^{𝛼−½}
Gegenbauer polynomial; Ultraspherical polynomials; Gegenbauer function; Ultraspherical polynomial; Gegenbauer Polynomials; Ultraspherical differential equation; Ultraspherical function
In mathematics, Gegenbauer polynomials or ultraspherical polynomials C(x) are orthogonal polynomials on the interval [−1,1] with respect to the weight function (1 − x2)α–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials.
Chihara–Ismail polynomials         
FAMILY OF ORTHOGONAL POLYNOMIALS INTRODUCED BY CHIHARA AND ISMAIL (1982)
Chihara–Ismail polynomial; Chihara-Ismail polynomial; Van Doorn polynomial; Van Doorn polynomials; Chihara-Ismail polynomials
In mathematics, the Chihara–Ismail polynomials are a family of orthogonal polynomials introduced by , generalizing the van Doorn polynomials introduced by and the Karlin–McGregor polynomials. They have a rather unusual measure, which is discrete except for a single limit point at 0 with jump 0, and is non-symmetric, but whose support has an infinite number of both positive and negative points.

ويكيبيديا

Polynomial

In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry.